Regression

Multiple Linear Regression

IMSL_REGRESSORS
IMSL_MULTIREGRESS

IMSL_MULTIPREDICT

Generates regressors for a general linear model.
Fits a multiple linear regression model and optionally produces summary statistics for a regression model.
Computes predicted values, confidence intervals, and diagnostics.

Variable Selection

IMSL_ALLBEST	All best regressions.
IMSL_STEPWISE	Stepwise regression.

Polynomial and Nonlinear Regression

IMSL_POLYREGRESS	Fits a polynomial regression model.
IMSL_POLYPREDICT	Computes predicted values, confidence intervals, and diagnostics.
IMSL_NONLINREGRESS	Fits a nonlinear regression model.

Multivariate Linear Regression-Statistical Inference and Diagnostics

IMSL_HYPOTH_PARTIAL
IMSL_HYPOTH_SCPH
Construction of a completely testable hypothesis.

IMSL_HYPOTH_TEST
Sums of cross products for a multivariate hypothesis.
Tests for the multivariate linear hypothesis.
Polynomial and Nonlinear Regression
IMSL_NONLINOPT
Fit a nonlinear regression model using Powell's algorithm.

Alternatives to Least Squares Regression

IMSL_LNORMREGRESS
LAV, Lpnorm, and LMV criteria regression.

Correlation and Covariance

IMSL_COVARIANCES
IMSL_PARTIAL_COV
IMSL_POOLED_COV
IMSL_ROBUST_COV

Variance-covariance or correlation matrix.
Partial correlations and covariances.
Pooled covariance matrix.
Robust estimate of covariance matrix.

Analysis of Variance

IMSL_ANOVA1
IMSL_ANOVAFACT
IMSL_MULTICOMP
IMSL_ANOVANESTED
IMSL_ANOVABALANCED

Analyzes a one-way classification model.
Analyzes a balanced factorial design with fixed effects.
Performs Student-Newman-Keuls multiple comparisons test.
Nested random model.
Balanced fixed, random, or mixed model.

Transforms

IMSL_FFTCOMP	Real or complex FFT.
IMSL_FFTINIT	Real or complex FFT initialization.
IMSL_CONVOL1D	Compute discrete convolution.
IMSL_CORR1D	Compute discrete correlation.
IMSL_LAPLACE_INV	Approximate inverse Laplace transform of a complex function.

Nonlinear Equations

Zeros of a Polynomial

 IMSL_ZEROPOLYReal or complex coefficients.

Zeros of a Function

IMSL_ZEROFCN
Real zeros of a function.

Root of a System of Equations

IMSL_ZEROSYS
Powell's hybrid method.

Optimization

Unconstrained Minimization

IMSL_FMIN

IMSL_FMINV
IMSL_NLINLSQ
(Univariate Function) Using function and possibly first derivative values.
(Multivariate Function) Using quasi-Newton method.
(Nonlinear Least Squares) Using Levenberg-Marquardt algorithm.

Linearly Constrained Minimization

IMSL_LINPROG
IMSL_QUADPROG
Dense linear programming.
Quadratic programming.

Nonlinearly Constrained Minimization

IMSL_MINCONGEN Minimize a general objective function.
IMSL_CONSTRAINED_NLP Using a sequential equality constrained quadratic programming method.

Special Functions

Error Functions

IMSL ERF
IMSL_ERFC
Error function.

IMSL_BETA
Complementary error function.

IMSL_LNBETA
IMSL_BETAI
Beta function.
Logarithmic beta function.
Incomplete beta function.

Gamma Functions

IMSL_LNGAMMA	Logarithmic gamma function.
IMSL_GAMMA_ADV	Real gamma function.
IMSL_GAMMAI	Incomplete gamma function.

Special Functions (continued)

Bessel Functions with Real Order and Complex Argument

IMSL_BESSI
Modified Bessel function of the first kind.
IMSL_BESSJ
IMSL_BESSK
IMSL_BESSY
IMSL_BESSI_EXP
IMSL_BESSK_EXP
Bessel function of the first kind.
Modified Bessel function of the second kind.
Bessel function of the second kind.
Bessel function e-|x|IO(x), Bessel function e-|x|I1(x).
Bessel function exK0(x), Bessel function exK1 (x).

Elliptic Integrals

IMSL_ELK	Complete elliptic integral of the first kind.
IMSL_ELE	Complete elliptic integral of the second kind.
IMSL_ELRF	Carlson's elliptic integral of the first kind.
IMSL_ELRD	Carlson's elliptic integral of the second kind.
IMSL_ELRJ	Carlson's elliptic integral of the third kind.
IMSL_ELRC	Special case of Carlson's elliptic integral.

Fresnel Integrals

IMSL_FRESNEL_COSINE	Cosine Fresnel integral.
IMSL_FRESNEL_SINE	Sine Fresnel integral.

Airy Functions

IMSL_AIRY_AI
IMSL_AIRY_BI
Airy function, and derivative of the Airy function.
Airy function of the second kind, and derivative of the Airy function of the second kind.

Kelvin Functions

IMSL_KELVIN_BERO
Kelvin function ber of the first kind, order 0, and derivative of the Kelvin function ber.
MSL_KELVIN_BEIO
Kelvin function bei of the first kind, order 0, and derivative of the Kelvin function bei.
IMSL_KELVIN_KERO
Kelvin function ker of the second kind, order 0, and derivative of the Kelvin function ker.
IMSL_KELVIN_KEIO
Kelvin function kei of the second kind, order 0 and derivative of the Kelvin function kei.

Basic Statistics and Random Number Generators

Simple Summary Statistics

IMSL_SIMPLESTAT
IMSL_NORM1SAMP
IMSL_NORM2SAMP
Tabulate, Sort, and Rank
IMSL_FREQTABLE
IMSL_SORTDATA
IMSL_RANKS

Univariate summary statistics.
Mean and variance inference for a single normal population.
Inferences for two normal populations.

Tallies observations into a one-way frequency table.
Sorts data with options to tally cases into a multiway frequency table.
Ranks, normal scores, or exponential scores.

Interpolation and Approximation

Cubic Spline Interpolation

IMSL_CSINTERP	Derivative end conditions.
IMSL_CSSHAPE	Shape preserving.

B-spline Interpolation

IMSL_BSINTERP	One-dimensional and two-dimensional interpolation.
IMSL_BSKNOTS	Knot sequence given interpolation data.

B-spline and Cubic Spline Evaluation and Integration
IMSL_SPVALUE
IMSL_SPINTEG
Least-squares Approximation and Smoothing
IMSL_ECNLSQ
IMSL_BSLSQ
General functions.

IMSL_CONLSQ
IMSL_CSSMOOTH
IMSL_SMOOTHDATA1D

Scattered Data Interpolation

IIMSL_SCAT2DINTERP
IMSL_RADBF
IMSL_RADBE

Akima's surface-fitting method.
Computes a fit using radial-basis functions.
Evaluates a radial-basis fit.

Quadrature

Univariate and Bivariate Quadrature

IMSL_INTFCN
Integration of a user-defined univariate or bivariate function.

Arbitrary Dimension Quadrature

IMSL_INTFCNHYPER
IMSL_INTFCN_QMC
Iterated integral on a hyper-rectangle.
Intergrates a function on a hyper-rectangle using a Quasi Monte Carlo method.

Gauss Quadrature

IMSL_GQUAD
Gauss quadrature formulas.

Differentiation

IMSL_FCN_DERIV
First, second, or third derivative of a function.

Differential Equations

IMSL_ODE
IMSL_PDE_MOL
IMSL_POISSON2D

Adams-Gear or Runge-Kutta method.
Solves a system of partial differential equations using the method of lines.
Solves Poisson's or Helmholtz's equation on a two-dimensional rectangle.

Categorical and Discrete Data Analysis

Statistics in the Two-Way Contingency Table

IMSL_CONTINGENCY	Two-way contingency table analysis.
IMSL_EXACT_ENUM	Exact probabilities in a table; total enumeration.
IMSL_EXACT_NETWORK	Exact probabilities in a table.

Generalized Categorical Models

IMSL_CAT_GLM
Generalized linear models.

Nonparametric Statistics

One Sample Tests-Nonparametric Statistics

IMSL_SIGNTEST
IMSL_WILCOXON
IMSL_NCTRENDS
IMSL_CSTRENDS
IMSL_TIE_STATS

Sign test.
Wilcoxon rank sum test.
Noehter's test for cyclical trend.
Cox and Stuarts' sign test for trends in location and dispersion.
Tie statistics.

Two or More Samples Tests—Nonparametric Statistics

IMSL_KW_TEST
IMSL_FRIEDMANS_TEST
IMSL_COCHRANQ
IMSL_KTRENDS

Kruskal-Wallis test.
Friedman's test.
Cochran's Q test.
K -sample trends test.

Goodness of Fit

General Goodness of Fit Tests

IMSL_CHISQTEST	Chi-squared goodness of fit test.
IMSL_NORMALITY	Shapiro-Wilk W test for normality.
IMSL_KOLMOGOROV1	One-sample continuos data Kolmogorov-Smirnov.
IMSL_KOLMOGOROV2	Two-sample continuos data Kolmogorov-Smirnov.
IMSL_MVAR_NORMALITY	Mardia's test for multivariate normality.

Tests for Randomness

IMSL_RANDOMNESS_TEST Runs test, Paris-serial test, d2 test or triplets tests.

Time Series and Forecasting

IMSL_ARMA Models

IMSL_ARMA

IMSL_DIFFERENCE
IMSL_BOXCOXTRANS
IMSL_AUTOCORRELATION
IMSL_PARTIAL_AC
IMSL_LACK_OF_FIT
IMSL_GARCH
IMSL_KALMAN

Computes least-squares or method-of-moments estimates of parameters and optionally computes forecasts and their associated probability limits.
Performs differencing on a time series.
Perform a Box-Cox transformation.
Sample autocorrelation function.
Sample partial autocorrelation function.
Lack-of-fit test based on the corrleation function.
Compute estimates of the parameters of a $\operatorname{GARCH}(\mathrm{p}, \mathrm{q})$ model.
Performs Kalman filtering and evaluates the likelihood function for the statespace model.

Multivariate Analysis

IMSL_K_MEANS
IMSL_PRINC_COMP
IMSL_FACTOR_ANALYSIS
IMSL_DISCR_ANALYSIS

Performs a K-means (centroid) cluster analysis.
Computes principal components.
Extracts factor-loading estimates.
Perform discriminant function analysis.

Survival Analysis

Analyzes survival data using a generalized linear model and estimates using various parametric modes.

Probability Distribution Functions and Inverses

IMSL_NORMALCDF
IMSL_BINORMALCDF
IMSL_CHISQCDF
IMSL_FCDF
IMSL_TCDF
IMSL_GAMMACDF
IMSL_BETACDF
IMSL_BINOMIALCDF
IMSL_BINOMIALPDF
IMSL_HYPERGEOCDF
IMSL_POISSONCDF

Normal (Gaussian) distribution function.
Bivariate normal distribution.
Chi-squared distribution function.
F distribution function.
Student's t distribution function.
Gamma distribution function.
Beta distribution function.
Binomial distribution function
Binomial probability function.
Hypergeometric distribution function.
Poisson distribution function.

Random Number Generation

Random Numbers

IMSL_RANDOMOPT
IMSL_RANDOM_TABLE
IMSL_RANDOM
IMSL_RANDOM_NPP
IMSL_RANDOM_ORDER

IMSL_RAND_TABLE_2WAY
IMSL_RAND_ORTH_MAT
IMSL_RANDOM_SAMPLE
IMSL_RAND_FROM_DATA
IMSL_CONT_TABLE
IMSL_RAND_GEN_CONT
IMSL_DISCR_TABLE
IMSL_RAND_GEN_DISCR

Retrieves uniform $(0,1)$ multiplicative, congruential pseudorandom-number generator.
Sets or retrieves the current table used in either the shuffled or GFSR random number generator. Generates pseudorandom numbers.

Generates pseudorandom numbers from a nonhomo geneous Poisson process.
Generates pseudorandom order statistics from a uniform $(0,1)$ distribution, or optionally from a standard normal distribution.

Generates a pseudorandom two-way table.
Generates a pseudorandom orthogonal matrix or a correlation matrix.
Generates a simple pseudorandom sample from a finite population.
Generates pseudorandom numbers from a multivariate distribution determined from a given sample. Sets up table to generate pseudorandom numbers from a general continuous distribution.
Generates pseudorandom numbers from a general continuous distribution.
Sets up table to generate pseudorandom numbers from a general discrete distribution.
Generates pseudorandom numbers from a general discrete distribution using an alias method or optionally a table lookup method.

Random Number Generation (continued)

Stochastic Processes

IMSL_RANDOM_ARMA
Generate pseudorandom IMSL_ARMA process numbers.

Low-discrepancy Sequences

IMSL_FAURE_INIT	Initializes the structure used for computing a shuffled Faure sequence.
IMSL_FAURE_NEXT_PT	Generates a shuffled Faure sequence.

Math and Statistics Utilities

Dates

IMSL_DAYSTODATE	Days since epoch to date.
IMSL_DATETODAYS	Date to days since epoch.

Constants and Data Sets

IMSL_CONSTANT Natural and mathematical constants.
IMSL_MACHINE
Machine constants.
IMSL_STATDATA
Commonly analyzed data sets.

Binomial Coefficient

IMSL_BINOMIALCOEF Evaluates the binomial coefficient.

Geometry

IMSL_NORM
Vector norms.

Matrix Norm

IMSL_MATRIX_NORM
Real coordinate matrix.

Matrix Entry and Display

PM Formatted output of arrays using the standard linear algebraic convention: "row" refers to the first index of the array and "column" refers to the second.
RM Formatted input of arrays using the standard linear algebraic convention: "row" refers to the first index of the array and "column" refers to the second.

Linear Systems

Matrix Inversion

IMSL_INV
General matrix inversion.

Linear Equations with Full Matrices

IMSL_LUSOL
IMSL_LUFAC
IMSL_CHSOL
IMSL_CHFAC

Linear Least Squares with Full Matrices
IMSL_QRSOL
IMSL_QRFAC Least-squares factorization.
IMSL_SVDCOMP Singular Value Decomposition (SVD) and generalized inverse.
IMSL_CHNNDSOL Solve and generalized inverse for positive semidefinite matrices.
IMSL_CHNNDFAC Factor and generalized inverse for positive semidefinite matrices.
IMSL_LINLSQ
Linear constraints.

Sparse Matrices

IMSL_SP_LUSOL	Solve a sparse system of linear equations $\mathrm{Ax}=\mathrm{b}$.
IMSL_SP_LUFAC	Compute an LU factorization of a sparse matrix stored in either coordinate format or CSC format.
IMSL_SP_BDSOL	Solve a general band system of linear equations $\mathrm{Ax}=\mathrm{b}$.
IMSL_SP_BDFAC	Compute the LU factorization of a matrix stored in band storage mode.
IMSL_SP_PDSOL	Solve a sparse symmetric positive definite system of linear equations Ax = b.
IMSL_SP_PDFAC	Compute a factorization of a sparse symmetric positive definite system of linear equations Ax = b.
IMSL_SP_BDPDSOL	Solve a symmetric positive definite system of linear equations Ax $=\mathrm{b}$ in band symmetric storage mode. Compute the RTR Cholesky factorization of symmetric positive definite matrix, A, in band symmetric storage mode.
IMSL_SP_BDPDFAC	Solve a linear system Ax = b using the restarted generalized minimum residual (GMRES) method.
IMSL_SP_CG	Solve a real symmetric definite linear system using a conjugate gradient method.
IMSL_SP_MVMUL	Compute a matrix-vector product involving a sparse matrix and a dense vector.

Eigensystem Analysis

Linear Eigensystem Problems
IMSL_EIG
General and symmetric matrices.

Generalized Eigensystem Problems

IMSL_EIGSYMGEN	Real symmetric matrices and B positive definite.
IMSL_GENEIG	General eigenexpansion of $A x=\lambda B x$.

Copyright © 2006 ITT Corporation. IDL is a trademark of ITT Corporation. Portions of this software are Copyright © 1970-2006 by Visual Numerics, Inc. All other marks are the property of their respective owners. All rights reserved.

ITT

