

IDL Tutorial

Programming in IDL

Copyright © 2008 ITT Visual Information Solutions

All Rights Reserved
http://www.ittvis.com/

IDL® is a registered trademark of ITT Visual Information Solutions for the computer

software described herein and its associated documentation. All other product names

and/or logos are trademarks of their respective owners.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 2 of 31

A Brief Tour of the IDL Language

Individuals who are new to IDL or have not been exposed to the software before

may be interested in seeing some demonstrations of how the software can be

utilized. One of the best ways to get a feel for the capabilities of IDL is to run the

built-in demo system, which can be accessed by executing the command DEMO at
the IDL> command prompt :

IDL> demo

Note: The IDL source code for these demonstration programs can be found in the
“examples/demo/demosrc/” subfolder of the IDL installation.

The demonstration programs are launched by a category on the left-hand side, then

double-clicking on the link in the lower-right hand corner.

Although IDL has a number of interactive tools for data input, analysis, and

visualization, it is (in essence) a programming language. The primary mechanism

for using IDL is by executing statements, either at the command line or within

programs, which control the actions of IDL. IDL statements are case insensitive (and

most are also space insensitive to an extent). For instance, each of the following are

acceptable IDL statements (and perform the same exact operation) :

1. IDL> PRINT,2*4
 8

2. IDL> print, 2 * 4
 8

3. IDL> Print, 2*4
 8

The PRINT routine prints the value of its argument into the IDL output log. Notice

that the argument is evaluated before it is printed, resulting in the number (8) being

output to the log window.

Note: IDL saves previously entered statements in a buffer, and these statements can be recalled to the
command line with the UP-DOWN arrow keys on most keyboards while cursor focus is at the command
line. The number of lines saved in the recall buffer can be changed in the Preferences for IDL.

In an IDL session, data (i.e. numbers and strings) is stored in what’s known as

variables. There are 3 basic types of IDL variables :

• Scalar (a single value)

• Array (from 1 to 8 dimensions – a vector is an array with only 1 dimension)

• Structure (an aggregate of various data types and other variables)

Any given variable in IDL also has a specific data type. There are 12 basic atomic

data types in IDL (seven different types of integers, two floating-point types, two

complex types, and a string) [Fig. 1-3]. The data type assigned to a variable is

determined either by the syntax used when creating the variable, or as a result of

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 3 of 31

some operation that changes the type of the variable (i.e. the IDL language is

dynamically typed).

Figure 1-3: IDL data types

Variables do not have to be declared in IDL, and the data type of a variable can be

determined by its usage. If a new variable is set equal to the sum of two integers,

then the new variable will also be an integer. For example, start by declaring a

scalar variable named “a” and set it equal to a value of (2) :

4. IDL> a = 2

By default, if a variable is set to a whole number it is assigned the 16-bit signed

integer data type, as illustrated in the Declare Scalar Syntax column of Fig. 1-3.

Next, declare a second scalar variable called “b” and set it equal to a floating-point
value of (5) :

5. IDL> b = 5.0

IDL provides the ability to perform an arithmetic operation on these two variables

and store the result in a new variable called “c” without having to first declare “c” :

6. IDL> c = a + b

The HELP routine is used to get information about the IDL session. In this case, use

the HELP routine to obtain information on the three variables declared thus far :

7. IDL> help, a, b, c
A INT = 2
B FLOAT = 5.00000
C FLOAT = 7.00000

Notice that when variables of different data types are combined in a single

expression, the result has the data type that yields the highest precision.

So far all of the work performed has been with scalar variables, but the real power of

IDL is in the fact that it’s an array-oriented language. For example, declare a

variable called “array” as an integer matrix with two dimensions of size 5 columns

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 4 of 31

and 5 rows. Use the INDGEN function to set the value for each element of the array

to its one-dimensional subscript (notice that IDL is a row-major language) :

8. IDL> array = indgen (5, 5)

9. IDL> help, array
ARRAY INT = Array[5, 5]

10. IDL> print, array
 0 1 2 3 4
 5 6 7 8 9
 10 11 12 13 14
 15 16 17 18 19
 20 21 22 23 24

Since IDL is an array-oriented language, any operation that is applied to an array

variable will automatically affect every element of the array without having to utilize

FOR loops. For example, every element within the variable “array” can be multiplied

by the scalar value (2) that is currently stored in the variable “a” with one simple

statement :

11. IDL> array = array * a

12. IDL> print, array
 0 2 4 6 8
 10 12 14 16 18
 20 22 24 26 28
 30 32 34 36 38
 40 42 44 46 48

The ability to perform operations on only specific elements of an array is another

power of the IDL language and is called subscripting. The square bracket

characters “[“ and “]” are used to perform subscripting in IDL. Since IDL is row-

major, the appropriate way to subscript a 2-dimensional array is with the syntax

[column#, row#]. It is also important to keep in mind that indexes for subscripting

start at 0 instead of 1. For example, to print only the value found in the element in

the 2nd column and 4th row of the variable “array” execute the statement :

13. IDL> print, array [1,3]
 32

So far we have executed two different routines from the IDL language library, PRINT
and HELP. There are 3 basic types of routines that can be used by executing

statements within the IDL language :

• Procedures

• Functions

• Executive Commands

A procedure is a routine that simply performs a well-defined task. In contrast, a

function is a routine that performs a well-defined task and also returns a value to

the specified variable once it is finished executing. Executive commands are used

to control the execution of IDL programs. The statements executed to run the 3

different types of IDL routines differ in their calling sequence syntax :

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 5 of 31

Procedure: IDL> PROCEDURE, argument

Function: IDL> result = FUNCTION (argument)

Executive: IDL> .EXECUTIVE_COMMAND –flags argument

For example, execute the following procedure, function, and executive command

statements at the IDL> command prompt (Note: “0” is the number zero) :

14. Procedure: IDL> CALENDAR, 1976

15. Function: IDL> time = SYSTIME (0)

16. Executive: IDL> .COMPILE arrow

In the example statements above, the CALENDAR procedure displays a simple

calendar for the year 1976 in an IDL graphics window, the SYSTIME function returns

the current time as a date/time string into the variable “time”, and the .COMPILE
executive command compiles the ARROW routine from the IDL distribution library

and opens its source code file into the IDLDE document panel. There are hundreds

of routines built into IDL, and most fall within one of these three categories.

In order to view the value returned by the SYSTIME function into the variable “time”
the HELP procedure can be utilized :

17. IDL> help, time

The IDL output log should report that “time” is a variable of type string that is equal
to the current date/time in the format “DOW MON DD HH:MM:SS YEAR”.

There are also 2 different types of parameters that any given IDL routine can

accept :

• Arguments

• Keywords

In the examples above, only arguments were specified. Arguments are used to

pass information (e.g. data) to and/or from the IDL routine. Arguments are

positional in that the order in which they are passed dictates what the IDL routine
does with the information in the variable/value specified. Some or all of the

arguments for any given routine may be optional.

In contrast, keywords are always optional and can be specified in any order.

Keyword parameters are used to control the behavior of the IDL routine being
executed, or to specify a named variable into which a result will be placed. For
instance, to control the behavior of the HELP procedure so it returns information

about the amount of dynamic memory (in bytes) currently in use by the IDL session,

set the MEMORY keyword equal to one :

18. IDL> help, memory=1

The MEMORY keyword is a binary behavioral parameter that is either “on” or “off”,

and this is controlled by setting the keyword to a value of 1 or 0, respectively. A

shortcut to setting a keyword “on” is available by preceding the variable with the
forward slash “/” character. In addition, keywords can be abbreviated to the

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 6 of 31

smallest string that uniquely identifies them for the routine in question. For

example, the following is a shortcut to perform the same exact task as above :

19. IDL> help, /mem

Some keywords are used to return results from a routine. For example, the OUTPUT
keyword to the HELP procedure can be used to place a string array containing the
formatted output of the HELP command into a named variable called “text” :

20. IDL> help, /mem, output=text

21. IDL> help, text
TEXT STRING = Array[1]

22. IDL> print, text

Finally, it is worth mentioning that you can view the IDL software documentation and

automatically jump to the index location of a specific keyword by executing the

question-mark character “?” followed by the keyword :

23. IDL> ?help

This will launch the IDL Online Help system and display the reference guide entry for

the HELP procedure.

Introduction to IDL Programming

An IDL program consists of one or more IDL commands that are executed in a

sequential fashion. The IDL software integrates a powerful, array-oriented language

with numerous mathematical analysis and graphical display techniques.

Programming in IDL is a time-saving alternative to programming in compiled

computer languages such as FORTRAN or C. Using IDL, tasks which require days or

weeks of programming with traditional languages can be accomplished in hours. The

user can explore data interactively using IDL commands and then create complete

applications by writing IDL programs. Advantages of programming in IDL include :

• IDL is a complete, structured language that can be used both interactively

and to create sophisticated algorithms and interactive applications.

• Operators and functions work on entire arrays (without using loops),

simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant

feedback and “hands-on” interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image

display, and animation allow the user to observe the results of computations

immediately.

• Many numerical and statistical analysis routines—including Numerical Recipes

routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow the user to read any type of custom

data format. Support is also provided for common image standards (including

BMP, JPEG, and XWD) and scientific data formats (CDF, HDF, and NetCDF).

• IDL widgets can be used to quickly create multi-platform graphical user

interfaces.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 7 of 31

• IDL programs run the same across all supported platforms (Microsoft

Windows and a wide variety of Unix systems) with little or no modification.

This application portability allows the program to easily support a variety of

computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call IDL

routines as a subroutine library or display “engine”.

There are several different ways in which a computer program can be created, and

IDL supports the development of programs using a wide variety of methodologies.

There are 5 primary types of IDL programs :

• Batch Files

• Main-Level Programs

• Named Programs (procedures & functions)

o Object-Oriented Programs (creating IDL objects and their methods)

o iTools System Programs

These different types of IDL programs are not necessarily completely distinct from

one another, and each may or may not include components from IDL’s widget toolkit

in order to display a graphical user interface. For example, in order to create objects

in IDL the programmer must actually write a series of named procedures or

functions. Furthermore, iTools system programming is merely an extension of IDL’s

object-oriented methodology that focuses on customizing and extending the iTools.

IDL is inherently a procedural language, which means that the programmer

specifies an explicit sequences of steps to follow to produce a result. A procedural

program is written as a list of instructions telling the computer, step-by-step, what to

do (e.g. open a file, read in data, perform processing, display result, etc.).

Procedural programming is a method of computer programming based upon the

concept of the unit and scope (the data viewing range of an executable code

statement). It is possible for a procedural program to have multiple levels or scopes,

with procedures defined inside other procedures. Each scope can contain variables

which cannot be seen in outer scopes.

Batch Files

A batch file contains one or more IDL statements or commands. Each line of the

batch file is read and executed before proceeding to the next line. This makes batch

files different from main-level programs, which are compiled as a unit before being

executed, and named programs, in which all program modules are compiled as an

unit before being executed. Batch files are sometimes referred to as include files,

since they can be used to include the multiple IDL statements contained in the file in

another program.

In the following exercise, a simple batch file is created and executed using the at

symbol (“@”) special character. The “@” symbol is either used as an include

character within other programs or to signal that batch processing is to be

performed. Executing the “@” symbol followed by the path to a batch file on disk

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 8 of 31

will execute all of the statements within the batch file, one line at a time, in a

sequential fashion.

1. Start by selecting “File > New > IDL Source File” from the main IDL

Development Environment menu system. This will open a new blank text

editor window in the document panel of the IDLDE.

2. Within the text editor window, enter the following IDL code :

file = filepath('marsglobe.jpg', subdir=['examples', 'data'])
read_jpeg, file, image
iImage, image

3. Once these 3 lines of IDL code have been entered, select “File > Save As…”
from the menu system.

4. Save the text to a new file named “batch.pro” located within the path for your

IDL installation.

5. Finally, execute this batch file :

IDL> @batch

This will execute each of the 3 lines from the batch file in sequence as if they were

executed individually at the IDL> command prompt. The resulting iImage
visualization window should look similar to Fig. 1.

Figure 1: Result of executing batch file program

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 9 of 31

6. Once finished viewing the image, close the IDL iImage window.

7. Select “File > Close” in order to close the text editor window for this batch
file.

Main-Level Programs

Main-level programs are entered at the IDL command line, and are useful when

you have a few commands you want to run without creating a separate file to

contain your commands. Main-level programs are not explicitly named; they consist

of a series of statements that are not preceded by a procedure or function heading.

They do, however, require an END statement. Since there is no heading, the

program cannot be called from other routines and cannot be passed arguments.

When IDL encounters a main program as the result of a .RUN executive command, it

compiles it into the special program named $MAIN$ and immediately executes it.

Afterwards, it can be executed again by using the .GO executive command.

The following example creates and executes a small main-level program :

1. At the IDL> command prompt, enter the following :

IDL> a = 3

2. Next, execute the .RUN executive command. This changes the command

prompt from “IDL>” to “-” :

IDL> .RUN

3. Enter the following 3 statements at the “-” prompt :

a = a ^ 2
PRINT, a
END

4. This creates a main-level program, which automatically compiles and

executes, resulting in the following output :

% Compiled module: $MAIN$.
 9

5. This main-level program can be run again by executing the .GO executive
command :

IDL> .GO

6. The result of executing this program a second time is cumulative, resulting in

the following output :

 81

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 10 of 31

Named Programs (Procedures & Functions)

Named programs are modules that are given explicit names so they can be called

from other programs as well as executed at the IDL command line. Named

programs are usually stored in ASCII text files on disk and are given a “.pro”
extension by convention. There are two different types of named programs in IDL;

procedures and functions. The concept of procedures and functions should be

familiar since almost all of the statements executed in this tutorial thus far have

involved either a procedure or a function (or a combination of both).

Procedures and functions are self-contained modules that break large tasks into

smaller, more manageable ones. A procedure is a self contained sequence of IDL

statements with an unique name that performs a well defined task. A function is a

self-contained sequence of IDL statements that performs a well-defined task and

returns a value to the calling program unit when it is executed. Consequently, all

functions must contain a call to the RETURN procedure with a specific value (scalar,

string, array, structure, etc.) as the argument which is returned to the calling

program unit.

Before a procedure or function can be executed, it must be compiled. When a

system routine (a function or procedure built into IDL, such as SURFACE) is called,
either from the command line or from another procedure, IDL already knows about

this routine and compiles it automatically. When a user-defined function or

procedure is called, IDL must compile the program before it can be executed. There

are 3 ways in which a procedure or function can be compiled :

• Automatically : If the ASCII text source code file for the program has a

filename that is identical to the name of the main program module, the

filename ends with a “.pro” extension, and this file is found within IDL’s path,
then the program will be automatically compiled when it is executed. For

reference, IDL’s path is one of the Preferences found within the IDL

Development Environment, and it is also stored in an internal system variable

named !PATH.
• Interactively : If the source code file for the program is currently open within

the text editor of the IDL Development Environment, the user can either

select “Run > Compile” from the menu system or press the yellow

compile button on the toolbar in order to compile the program.

• Manually : The user can explicitly compile a program by executing the

.COMPILE, .RUN, or .RNEW executive commands with the appropriate path to

the source code file on disk. If the source code file is found within IDL’s path

or the current working directory, then just the name of the file itself is

needed. If the user is working within the IDL Development Environment, the

source code will automatically be opened into the text editor window.

In the following exercise, a simple procedure program named “muscle_view” will be
created, compiled, and executed. This program will open the example data file

“muscle.jpg” included with the IDL installation, read the image data into IDL, and

displays the image in a FOR loop that cycles through all of IDL’s 41 predefined

colortables using Direct Graphics.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 11 of 31

1. Start by selecting “File > New > IDL Source File” from the main IDL

Development Environment menu system. This will open a new blank text

editor window in the document panel of the IDLDE.

2. The first step in writing a procedure is to create the definition statement,

and this is accomplished using the PRO statement in IDL. In this case, the

name given to the procedure will be “muscle_view”, so start by typing the

following text in the blank text editor window :

PRO muscle_view

At this point, the name of the current text document is probably [Untitled1*] and it

is not being saved to the harddrive, so it may be appropriate to save this text to an

IDL source code file on disk.

3. From the main IDLDE menu system select “File > Save As”.
4. Save the text to a new file named “muscle_view.pro” located within the path

for your IDL installation.

Once this is accomplished, the title bar across the top of the IDL Development

Environment should be labeled with “[muscle_view.pro]”. Whenever a change is

made to the file an asterisk “*” character will be added to the end of the filename,

alerting the user that the file contains modifications that have not yet been saved to

the file on disk. Changes to the source code file can be saved by selecting “File >

Save” from the IDLDE menu or by pressing the button on the IDLDE toolbar.

5. The first step within the program that needs to be entered on the next line of

the text editor is the specification of the path to the file that is going to be

opened :

 file = filepath('muscle.jpg', subdir=['examples','data'])

6. When writing a program it is always a good idea to include as much error

checking as possible. In this case it may be a good idea to make sure that

the specified file is a valid JPEG image file and obtain some information about

it using the QUERY_JPEG function before proceeding :

result = query_jpeg(file, info)

7. The QUERY_JPEG function returns a value of “1” into the result if the query
was successful and the file appears to be a valid JPEG format image file,

otherwise it returns “0” upon failure. Consequently, it may be a good idea to

terminate the execution of this program at this point using the RETURN
procedure if the file is not determined to be a valid JPEG image file :

if result eq 0 then return

8. Now the JPEG image file data can be read into this IDL program unit using the

READ_JPEG procedure :

read_jpeg, file, image

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 12 of 31

9. An IDL graphics window needs to be created to display this image, and the

size of this window can be made to match the size of the image using the

“info” structure returned by the earlier call to QUERY_JPEG :

window, xsize=info.dimensions[0], ysize=info.dimensions[1]

10. Next, the use of color decomposition must be disabled in order to use IDL’s

built-in colortables on 24-bit displays :

device, decomposed=0

Now the program is ready to cycle through the colortables and display the image in

the Direct Graphics window. In order to accomplish this task, the programmer must

make use of the FOR control statement. The syntax for declaring a FOR loop within
the IDL language is :

FOR variable = init, limit DO BEGIN

 statements

ENDFOR

11. In order to loop through each of IDL’s predefined colortables and display the

image data insert the following lines of text :

for i = 0, 40 do begin
 loadct, i
 tvscl, image
endfor

This will cycle through the variable “i” set to values 0�40, load the colortable index

for the current FOR loop iteration value of “i” using LOADCT, display the image using

TVSCL, increment the variable “i” by a value of 1, and start the next iteration.

12. Once the FOR loop has executed, the graphics window that was created can
be cleaned up and destroyed by calling the WDELETE procedure :

wdelete

13. Finally, the end of the program must be defined by inserting the END
statement :

 END

14. Once all of this text has been entered make sure to select “File > Save” or hit

the button on the IDLDE toolbar.

The final program within the text editor window should look similar to Fig. 2.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 13 of 31

Figure 2: Completed source code for the “muscle_view” procedure

The first step in running this IDL program is to compile the procedure so it can be

executed within the IDL process.

15. In order to compile the procedure, simply select “Run > Compile

muscle_view.pro” from the main IDLDE menu system or hit the yellow

compile button on the toolbar. This will automatically call the executive

command .COMPILE and the output log should read :

% Compiled module: MUSCLE_VIEW.

If there are any compilation errors an informational message will appear in the

output log and a red circular dot will be placed to the left of the line where the error

occurs. Any compilation errors must be resolved before the program can be

executed.

16. Once the program is successfully compiled it can be executed by selecting

“Run > Run muscle_view” from the menu, hitting the blue run button on

the toolbar, or simply executing “muscle_view” at the IDL> prompt :

IDL> muscle_view

During execution of the program the “muscle.jpg” image will be displayed using all

41 of IDL’s built-in colortables [Fig. 3]. While the program is executing the LOADCT
procedure will output the currently loaded colortable to the output log when it’s

being called within the FOR loop. The total time it takes for this program to execute

should be very short, which is a testament to the rapid image display capabilities of

the Direct Graphics system and the overall speed of the IDL language.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 14 of 31

Figure 3: Image display during execution of the “muscle_view” program

17. Select “File > Close” in order to close the text editor window for this
procedure.

In the next exercise a simple function will be created that computes the area of a

circle given its radius. Functions are slightly different from procedures because they

must return a specific value to the calling module. Consequently, functions are

particularly useful when performing data processing and analysis. In addition, as

previous exercises within this tutorial have illustrated, the calling syntax for

executing functions is different than procedures.

18. Start by selecting “File > New > IDL Source File” from the main IDL

Development Environment menu system. This will open a new blank text

editor window in the document panel of the IDLDE.

Once again, the first step in writing a function is to create the definition

statement, and this is accomplished using the FUNCTION statement in IDL. In this

case, the function will need to accept an argument in order to allow passing of the

input radius value into the program. Furthermore, the user may wish to specify

whether they want the calculation performed using single-precision or double-

precision floating-point arithmetic. This can be accomplished by specifying a

keyword that the user can utilize in order to control the behavior of the function.

19. The name given to the function will be “circle_area”, the input argument

should be named “radius”, and a keyword named “dbl” can be declared so the

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 15 of 31

user has control over the precision. This can be accomplished with the

following definition statement :

FUNCTION circle_area, radius, dbl=dbl

Once again, it is a good idea to save this text to an IDL source code file on disk :

20. From the main IDLDE menu system select “File > Save As”.
21. Save the text to a new file named “circle_area.pro” located within the path for

your IDL installation.

22. The KEYWORD_SET function built into the IDL language library is useful for
determining the status of a keyword variable and whether or not it was “set”
by the user. In this case, a variable named “dbl” exists within the function

and either has a value of 1 if it was set, or 0 if it was left un-set. The
KEYWORD_SET function can be used in conjunction with an IF … THEN …
ELSE code block to perform the necessary calculation using the appropriate

IDL system variable for the value of ∏ :

if keyword_set(dbl) then begin
 area = !DPI * radius ^ 2
endif else begin
 area = !PI * radius ^ 2
endelse

23. Once the area has been computed using the appropriate precision, the “area”

variable can be returned to the calling program module :

return, area

24. Finally, the end of the program must be defined by inserting the END
statement :

END

25. Once all of this text has been entered make sure to select “File > Save” or hit

the button on the IDLDE toolbar.

The final program within the text editor window should look similar to Fig. 4.

Figure 4: Completed source code for the “circle_area” function

Before the “circle_area” function can be executed it must be compiled.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 16 of 31

26. In order to compile the function, simply select “Run > Compile

circle_area.pro” from the main IDLDE menu system or hit the yellow

compile button on the toolbar. This will automatically call the executive

command .COMPILE and the output log should read :

% Compiled module: CIRCLE_AREA.

If there are any compilation errors an informational message will appear in the

output log and a red circular dot will be placed to the left of the line where the error

occurs. Any compilation errors must be resolved before the program can be

executed.

Once the program is successfully compiled it can be executed by calling it with the

appropriate function syntax :

27. IDL> area = CIRCLE_AREA (7)

This statement calls the “circle_area” function and specifies an input radius value of
seven. The named variable “area” contains the result of this calculation that is
returned from the function :

28. IDL> HELP, area
 AREA FLOAT = 153.938

In addition, the “circle_area” function can be called with the “dbl” keyword set in

order to compute the area in double-precision :

29. IDL> area = CIRCLE_AREA (7, /DBL)

30. IDL> HELP, area
 AREA DOUBLE = 153.93804

The “area” variable that is returned from the function is now double-precision.

31. Once finished experimenting with the “circle_area” function, select “File >
Close” in order to close the text editor window.

Object-Oriented Programs

Traditional programming techniques make a strong distinction between routines

written in the programming language (procedures and functions in the case of IDL)

and the data to be acted upon by these routines. In contrast, object-oriented

programming removes this distinction by encapsulating both data and functionality

(i.e. routines) into a single entity known as objects.

IDL objects may contain data with various data types or organizational arrangement.

The routines (i.e. functionality) within an object that act upon this data are called

methods. Object methods are merely IDL procedures and functions that have

special names and are called in a special way. In the IDL programming

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 17 of 31

environment, object data are protected from the rest of the program and are only

accessible through the object methods (i.e. IDL object data is always private).

IDL’s object system provides support for the following concepts and mechanisms:

• Classes and Instances : IDL objects are created as instances of a class,

which is defined in the form of an IDL structure. The name of the structure is

also the class name for the object. Objects can only be created by calling the

OBJ_NEW (or OBJARR) function with the name of the class structure as the

argument, and can only be accessed via the returned object reference.

• Encapsulation : Encapsulation is the ability to combine data and the

routines that affect the data (known as methods) into a single object.

• Methods : Methods are the routines (procedures and functions) that perform

specific operations within the object. Method routines are identified as

belonging to an object class via a routine naming convention

ClassName::MethodName.
• Polymorphism : Polymorphism is the ability to create multiple object types

that support the same operations.

• Inheritance : Inheritance is the ability of an object class to inherit the

behavior of other object classes. This means that when writing a new object

class that is very much like an existing object class, you need only program

the functions that are different from those in the inherited class.

• Persistence : Persistence is the ability of objects to remain in existence in

memory after they have been created, allowing you to alter their behavior or

appearance after their creation. IDL objects persist until you explicitly

destroy them, or until the end of the IDL session.

• Object Lifecycle : The life of an object can be broken into three phases:

creation, use, and destruction. Object references are created using one of

two lifecycle routines: OBJ_NEW or OBJARR. The object is used by executing
its methods. Finally, the object is destroyed using the OBJ_DESTROY
procedure.

Objects are implemented in IDL as extensions of data structures. In other words, a

data structure and one or more IDL routines are combined to form an IDL object

class. Object classes are essentially the blueprints used to define individual objects.

There are 2 basic steps to creating an object class in IDL :

• Define the object class data structure by creating a named structure. The

name of this structure must be the same as the desired name for the object

class. For example, the following would be an appropriate structure definition

for an object class named SHOW3OBJ :

namedStructure = {SHOW3OBJ, data:ptr_new()}

• Define the methods of the object class using the CLASSNAME::method

declaration syntax. For example, a method named “Display” could be defined
for the SHOW3OBJ class using the following syntax :

PRO SHOW3OBJ::Display
if ptr_valid(self.data) then show3, *self.data
END

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 18 of 31

Once the object class has been defined an instance of the object can be created

using the OBJ_NEW function :

oShow3 = OBJ_NEW ('SHOW3OBJ', dist(100))

The Display method to this object can then be executed using IDL’s method

invocation operator (“->”), which is a hyphen followed by a greater-than sign :

 oShow3 -> display

In this example the Display method is a procedure, but methods can also be

functions. If an object method is defined as a function then its calling sequence will

be :

 result = object -> functionMethod ()

Once an object has data assigned to it, the methods automatically have access to

this data in a structure called “self” that has the same layout as the original object

class data structure. Consequently, there is no need to pass the data via arguments

and/or keywords in the call to an object method. In addition, the self structure can
be used to call other methods within an object. For instance, if there was a

LOADCOLOR method to the SHOW3OBJ object class it could directly call the DISPLAY
method using the self structure :

PRO SHOW3OBJ::Loadcolor, index
if n_params() NE 1 then return
if !D.N_COLORS GT 256 then device, decomposed=0
loadct, index
self -> display
END

When an instance of an object is created from a class using the OBJ_NEW function

an object reference is returned that points to an object heap variable [Fig. 5]. A

heap variable is an area of common memory allocated for a specific use and

accessed by way of one or more reference variables. These reference variables are

the means through which the object is referenced in IDL.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 19 of 31

Figure 5: An object heap variable with an object reference. The heap

variable encapsulates both the data and methods for the object.

Consequently, in the hypothetical example above, the variable oShow3 is not
actually the object itself but a reference to the object contained in heap memory.

Consequently, the programmer must take care when deleting objects since the

destruction of the object reference variable will not cleanup the heap memory

occupied by the object. Object heap variables persist in memory until explicitly

destroyed by the OBJ_DESTROY procedure:

 OBJ_DESTROY, oShow3

Once the OBJ_DESTROY procedure is called the object heap variable for this object
no longer exists, but the object reference variable oShow3 still exists and points to a
non-existent piece of memory. This is known as a dangling reference.

Consequently, it is always a good idea to also destroy all object reference variables

when destroying an object by either using the DELVAR procedure (interactive IDL
only) or the TEMPORARY function:

OBJ_DESTROY, TEMPORARY(oShow3)

In order to create an object class in IDL there are a set of programming rules that

must be followed when writing the source code. Selecting a name for a custom

object class is a very important consideration because it is important not to use the

same name as a class already built into IDL. Fortunately, most object classes built

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 20 of 31

into IDL have names that start with the string “IDL”, so it should be easy to derive a
name that does not conflict with one of the built-in classes.

When creating a custom object class in IDL a special naming convention must be

used for the source code file name and the procedure/function names within that

source code file. As mentioned before, the general form for the procedure/function

declaration statements within the object class source code is “CLASSNAME::method”.
In addition, there is also a naming convention for the source code file itself that

follows the general form “CLASSNAME__method” (Note: “__” is two underscores).

The information necessary for the object must be defined in the object class data.

When defining the data of an object, the programmer must determine in advance all

of the various data elements that might be necessary to complete all of the

functionality for the object. As mentioned earlier, the object class data is defined

and stored in an IDL named structure that has the same name as the class itself.

This is the first step in creating an object class and it occurs within a special

procedural method called “DEFINE”. Consequently, in order for IDL to create an

instance of an object with OBJ_NEW an IDL source code file for this object with the

name “CLASSNAME__define.pro” must be found in the !PATH (or manually compiled

within the current session of IDL). The define method is also the only method which

uses the two underscores (“__”) in the procedural declaration statement as opposed

to the two colons (“::”). For example, the source code to define the SHOW3OBJ
object class above would look like:

PRO SHOW3OBJ__define
namedStructure={SHOW3OBJ, data:ptr_new()}
END

This source code needs to be saved in an ASCII text file called

“show3obj__define.pro” in order for the object class to be used. The only purpose of

the __define procedure is to create the named structure that will contain the data for

the object class.

Once the data has been defined for an object class, the next step is to create the

methods that will define the functionality. These methods can be stored in separate

“CLASSNAME__method.pro” ASCII source code files, or they can all be stored in the
main “CLASSNAME__define.pro” file as long as the __define procedure is the last

module that occurs within the file.

There are also 2 other methods that must be included with every object class: INIT
and CLEANUP. The 3 main object methods (DEFINE, INIT, CLEANUP) must be

defined and compiled within IDL before an instance of the object can be created with

OBJ_NEW. The INIT method is an IDL function that is called by OBJ_NEW when the

object is created. The job of the INIT method is to take any arguments and

keywords passed from the user and perform any initialization necessary for the

object class. The process of initialization usually involves filling-in the members of

the object data structure with the data passed by the user in the call to OBJ_NEW.

Finally, the INIT method should return 1 if successful in initializing the object and 0 if

the initialization failed. In contrast, the CLEANUP method is called when the object

reference is destroyed (when OBJ_DESTROY is executed)) and should clean up any
pointers, objects, or other miscellaneous data in an effort to avoid memory leakage.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 21 of 31

The following exercise completes the definition of the SHOW3OBJ object class that
has been discussed herein by writing its IDL source code.

1. Start by selecting “File > New > IDL Source File” from the main IDL

Development Environment menu system. This will open a new blank text

editor window in the document panel of the IDLDE.

2. Immediately select “File > Save As” and save this to a file called
“show3obj__define.pro” located within the path for your IDL installation.

3. Type out the source code for this object class in the IDLDE text editor. There

will be a total of 5 methods defined for the SHOW3OBJ object class: DEFINE,

INIT, CLEANUP, LOADCOLOR, and DISPLAY. Make sure to remember the rule

of placing the __define procedure at the bottom of this file :

FUNCTION SHOW3OBJ::Init, data
self.data = ptr_new(data)
if !d.n_colors gt 256 then device, decomposed=0
loadct, 0, /silent
return, 1
END

PRO SHOW3OBJ::Cleanup
ptr_free, self.data
print, 'SHOW3OBJ object successfully destroyed.'
END

PRO SHOW3OBJ::Display
if ptr_valid(self.data) then show3, *self.data
END

PRO SHOW3OBJ::Loadcolor, index
loadct, index
self -> display
END

PRO SHOW3OBJ__define
namedStructure = {SHOW3OBJ, data:ptr_new()}
END

4. Once all of this source code has been entered into the text editor, save the

file and then compile the object class by pressing the yellow compile

button. This should report the following in the IDL Output Log :

IDL> .COMPILE show3obj__define.pro
% Compiled module: SHOW3OBJ::INIT.
% Compiled module: SHOW3OBJ::CLEANUP.
% Compiled module: SHOW3OBJ::DISPLAY.
% Compiled module: SHOW3OBJ::LOADCOLOR.
% Compiled module: SHOW3OBJ__DEFINE.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 22 of 31

Now that the object class is compiled within the current session of IDL it is ready to

be used. Initialize an instance of the SHOW3OBJ object class with data created by

the DIST function :

5. IDL> oShow3 = OBJ_NEW ('SHOW3OBJ', DIST (100))

Next, call the Display method for the object :

6. IDL> oShow3 -> Display

The resulting IDL 0 visualization window should contain a composite 3-D visualization

including an image, wire-mesh surface, and contour plot produced by IDL’s built-in

SHOW3 routine.

The Loadcolor method can also be executed to load IDL’s Rainbow colortable and

automatically redisplay the graphic:

7. IDL> oShow3 -> Loadcolor, 13

The resulting visualization window should look similar to Fig. 6 :

Figure 6: Result of invoking the “Loadcolor” method of the “SHOW3OBJ”

object class

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 23 of 31

Once the user is finished working with the object it is important to destroy the heap

variable and object reference:

8. IDL> OBJ_DESTROY, TEMPORARY (oShow3)
 SHOW3OBJ object successfully destroyed.

9. Once finished experimenting with the “SHOW3OBJ” object, select “File >
Close” in order to close the text editor window.

iTools System Programs

iTools programming is a special form of object-oriented programming that is used

to control, customize, and extend the tools built into the iTools system. The IDL

Intelligent Tools, or iTools, are applications written in IDL to perform a variety of

data analysis and visualization tasks. iTools share a common underlying application

framework, presenting a full-featured, customizable, application-like user interface

with menus, toolbars, and other graphical features.

However, iTools are much more than just a set of pre-written IDL programs. Behind

the iTool system lies the IDL Intelligent Tools Component Framework — a set of

object class files and associated utilities designed to allow you to easily extend the

supplied toolset or create entirely new tools of your own. The iTools component

framework is a set of object class definitions written in the IDL language. It is

designed to facilitate the development of sophisticated visualization tools by

providing a set of pre-built components that provide standard features including :

• Creation of visualization graphics

• Mouse manipulations of visualization graphics

• Annotations

• Management of visualization and application properties

• Undo/redo capabilities

• Data import and export

• Printing

• Data filtering and manipulation

• Interface element event handling

In addition, the iTools component framework makes it easy to extend the system

with components of your own creation, allowing you to design a tool to manipulate

and display your data in any way you choose. Programming in the iTools system

allows the user to create their own :

• iTool

• Visualization

• Operation

• Manipulator

• File Reader

• File Writer

• Graphical User Interface

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 24 of 31

A discussion of programming within the iTools system is beyond the scope of this

tutorial. For more information please consult the iTool Developer’s Guide

documentation manual included with the IDL online help system [Fig. 7].

Figure 7: The iTool Developer’s Guide documentation manual

Creating Graphical User Interfaces

IDL allows you to construct and manipulate graphical user interfaces using widgets.

Widgets (or controls, in the terminology of some development environments) are

simple graphical objects such as pushbuttons or sliders that allow user interaction via

a pointing device (usually a mouse) and a keyboard. This style of graphical user

interaction offers many significant advantages over traditional command-line based

systems.

IDL widgets are significantly easier to use than other alternatives, such as writing a

C language program using the native window system graphical interface toolkit

directly. IDL handles much of the low-level work involved in using such toolkits. The

interpretive nature of IDL makes it easy to prototype potential user interfaces. In

addition to the user interface, the author of a program written in a traditional

compiled language also must implement any computational and graphical code

required by the program. IDL widget programs can draw on the full computational

and graphical abilities of IDL to supply these components.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 25 of 31

The style of widgets IDL creates depends on the windowing system supported by

your host computer. Unix hosts use Motif widgets, while Microsoft Windows systems

use the native Windows toolkit. Although the different toolkits produce applications

with a slightly different look and feel, most properly-written widget applications work

on all systems without change.

IDL graphical user interfaces are constructed by combining widgets in a treelike

hierarchy. Each widget has one parent widget and zero or more child widgets.

There is one exception: the topmost widget in the hierarchy (called a top-level

base) is always a base widget and has no parent.

Programs that use widgets are event driven. In an event driven system, the

program creates an interface and then waits for messages (events) to be sent to it

from the window system. Events are generated in response to user manipulation,

such as pressing a button or moving a slider. The program responds to events by

carrying out the action or computation specified by the programmer, and then

waiting for the next event. Because of widget applications’ event-driven nature,

creating applications that use widgets is fundamentally different from creating non-

widget programs.

The following exercise creates a very simple graphical user interface application with

the appropriate event handling sub-program. This program displays a simple GUI

with a button labeled “Display Image” that can be pressed by the user in order to
generate an event that display an image from an example file included with IDL.

1. Start by selecting “File > New > IDL Source File” from the main IDL

Development Environment menu system. This will open a new blank text

editor window in the document panel of the IDLDE.

2. Immediately select “File > Save As” from the menu system and save this

document to a file called “simple_gui.pro” located within the path for your IDL
installation.

3. Type out the source code for this widget program into the IDLDE text editor :

PRO simple_gui_event, event
widget_control, event.top, get_uvalue=state
tv, state.image, true=1
END

PRO simple_gui
tlb = widget_base(/row, title='Simple GUI')
 subBase=widget_base(tlb)
 button = widget_button(subBase, value='Display Image')
 draw = widget_draw(tlb, xsize=512, ysize=512)
widget_control, tlb, /realize
file = filepath('elev_t.jpg', subdir=['examples', 'data'])
read_jpeg, file, image
device, decomposed=1
state = {image:image}
widget_control, tlb, set_uvalue=state
xmanager, 'simple_gui', tlb
END

This program contains 2 modules; the main GUI creation procedure named

“simple_gui”, and the event handler procedure called “simple_gui_event”. Within

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 26 of 31

the “simple_gui” procedure the layout of the widget hierarchy is defined, the GUI is
realized (i.e. displayed) to the screen, the image is read-in from a JPEG file on disk

and stored in a state structure, and the XMANAGER routine is called in order to
manage the event callback distribution. The “simple_gui_event” procedure is called
when the user presses the “Display Image” button, and it obtains the state structure
for the application and displays the image using the TV routine.

4. Once the source code for the program has been entered, save the changes by

pressing the button on the IDLDE toolbar.

5. Compile the program by pressing the yellow compile button.

6. Finally, run the program by pressing the blue run button.

7. Once the GUI for the program is displayed, use the mouse to press the

“Display Image” button [Fig. 8].

Figure 8: Execution of the “simple_gui” widget program

8. Once finished viewing the simple widget application, close the Simple GUI
window.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 27 of 31

Distributing IDL Programs

Once an application has been written in IDL, the user may wish to distribute this

program to friends, colleagues, or their own customers. IDL programs can be stored

and distributed as source code in ASCII text files with a “.pro” extension, or they can

be compiled within a development copy of IDL and saved to runtime binary files with

a “.sav” extension. Creating a runtime binary save file for an application allows the

programmer to create a distributable version of their application that does not

contain the original source code, thereby protecting the intellectual property rights of

the developer. Furthermore, the runtime binary save file version of a program can

be executed in the runtime environment of IDL, whereas a source code file requires

that the end-user have a full development copy of the IDL software package in order

to compile the program before execution. Creation of a runtime binary save file

version of a program involves using either the Projects built into the IDL
Development Environment, or the .COMPILE, RESOLVE_ALL, and SAVE routines built

into the IDL language library.

IDL has an architectural (and distribution) paradigm that is very analogous to Java

since they are both interpreted computer languages. There are basically 3 different

varieties of the IDL software package that can be used to execute programs written

in the IDL language :

• IDL (full developer’s copy)

• IDL Runtime

• IDL Virtual Machine

The primary difference between these varieties of IDL is that the full developer’s

copy allows the user to create, edit, modify, compile, execute, and save IDL

programs. In contrast, both the IDL Runtime and IDL Virtual Machine versions of

IDL can only be used to execute pre-compiled runtime binary versions (*.sav file) of

a program. Consequently, users of the IDL Runtime or the IDL Virtual Machine

cannot modify the IDL programs that are being executed.

In the following exercise, the “muscle_view” program that was created earlier will be

compiled and saved out to a runtime binary file on disk that can be executed in

either IDL Runtime or the IDL Virtual Machine. This can be accomplished with the

SAVE procedure, which is used to save either data variables or the compiled routines

within the current software session to IDL’s proprietary binary save file format. The

IDL save file format is encrypted (and is not documented) so it is impossible to

reverse-engineer a program stored in a “*.sav” file and obtain the original source
code. Calling the SAVE procedure with the ROUTINES keyword set will save all
currently compiled user-defined procedures and functions within the current IDL

session. Consequently, it is a good idea to reset the IDL session and start fresh so

that none of the other programs that have been compiled thus far are included in the

save file that is created :

1. IDL> .reset_session

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 28 of 31

Next, compile the “muscle_view” program that was created in the earlier exercise by

utilizing the .COMPILE executive command :

2. IDL> .COMPILE muscle_view
 % Compiled module: MUSCLE_VIEW.

The Runtime and Virtual Machine versions of the software are basically the IDL

interpreter provided in a series of library files. This interpreter includes all of the

internal system routines within the IDL language. However, it does not include the

routines within the IDL library that are written in IDL itself and are distributed as

source code *.pro files in the “lib” subfolder of a developer’s copy installation. For

example, the FILEPATH function from the IDL library that this “muscle_view”
program utilizes is actually distribute with the software in the following source code

file :

• Windows: C:\RSI\IDL##\lib\filepath.pro
• UNIX et al.: /usr/local/rsi/idl_#.#/lib/filepath.pro
• Mac OS X: /Applications/rsi/idl_#.#/lib/filepath.pro

When the “muscle_view” program is executed within a full developer’s copy of IDL,

the “filepath.pro” source code file is automatically located and compiled on-the-fly

because the “lib” subfolder of the installation is part of the default path. Since the

Runtime and Virtual Machine versions of IDL cannot compile programs from their

ASCII text source code, these routines cannot be distributed in their original *.pro
file form. Consequently, the programmer must be sure to resolve and compile all of

the external IDL routines that their program utilizes that are not internal system

routines built into the interpreter libraries. Fortunately, IDL contains a convenient

procedure that can be used by the IDL programmer in order to resolve all of these

dependencies named RESOLVE_ALL :

3. IDL> RESOLVE_ALL
 % Compiled module: RESOLVE_ALL.
 % Compiled module: LOADCT.
 % Compiled module: FILEPATH.
 % Compiled module: PATH_SEP.
 % Compiled module: UNIQ.

Notice that the RESOLVE_ALL procedure will locate and compile not only the LOADCT
and FILEPATH routines from the IDL library that this program explicitly calls, but will

also resolve any subsequent routines that these programs happen to call that are not

already compiled (in this case, PATH_SEP and UNIQ). Under initial inspection, it may

not be obvious to the programmer that this “muscle_view” program relies on the

PATH_SEP and UNIQ routines from the external IDL library because they do not

explicitly appear within the program, and this is the benefit of utilizing the

RESOLVE_ALL procedure when creating distributable applications.

Finally, the SAVE procedure can be called with the ROUTINES keyword set in order to
save all of the currently compile procedures and functions to an IDL runtime binary

save file. Use the FILE keyword to specify the appropriate output filename, which is

the name of the primary program module followed by a .sav extension :

4. IDL> SAVE, /ROUTINES, FILE='muscle_view.sav'

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 29 of 31

This operation will create a new file named “muscle_view.sav” within the current
working directory.

5. Navigate to this folder and attempt to locate the file named

“muscle_view.sav”. If this file is not found within the folder, then execute the
following IDL statements in order to determine the current working directory

and locate the “muscle_view.sav” file :

IDL> CD, CURRENT=current

IDL> PRINT, current

6. Once the “muscle_view.sav” file has been located, it can be executed within
IDL Runtime using the appropriate execution methodology based on operating

system :

• Windows: Simply double-click on the “muscle_view.sav” file.
• UNIX, Linux, & Mac OS X: At a shell or X11 terminal prompt, navigate to

the folder that contains the “muscle_view.sav” file and execute the following
command :

idl –rt=muscle_view.sav

Once this is accomplished a new IDL process will launch, the “muscle_view” program

will be executed, and the IDL process will shut-down.

7. Finally, the same program can be executed within the IDL Virtual Machine by

performing the following steps :

• Windows: Select “Start > Programs > RSI IDL #.# > IDL Virtual Machine”.
• UNIX, Linux, & Mac OS X: At a shell or X11 terminal prompt, navigate to

the folder that contains the “muscle_view.sav” file and execute the following
command :

idl –vm=muscle_view.sav

8. The IDL Virtual Machine splash screen will appear, and the user must click on

this splash screen in order to continue.

9. On Windows, the user will be prompted with a dialog to select the

“muscle_view.sav” program file on the harddrive.

Once this is accomplished a new IDL process will launch, the “muscle_view” program

will be executed, and the IDL process will shut-down.

A discussion on the creation of distributable applications, utilization of the Projects

built into the IDL Development Environment, and the exact differences between IDL

Runtime and IDL Virtual Machine is beyond the scope of this tutorial. For more

information please consult the Building IDL Applications documentation manual.

Writing Efficient IDL Programs

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 30 of 31

Knowledge of IDL’s internal design and implementation, along with careful memory

management, can be exploited to greatly improve the efficiency of IDL programs. In

IDL, complicated computations can be specified at a high level. Therefore, inefficient

IDL programs can suffer severe speed penalties — perhaps much more so than with

compiled programming languages.

Techniques for writing efficient programs in IDL are identical to those in other

computer languages, with the addition of the following simple guidelines :

• Use vector and array operations rather than loops wherever possible.

• Try to avoid loops with high repetition counts.

• Use IDL system functions and procedures wherever possible.

• Access array data in machine address order (IDL is row-major).

• Pay attention to expression evaluation order.

• Avoid IF … THEN … ELSE code block statements if possible, especially within

loops.

• Use only the highest precision (variable data types) necessary during

computations.

• Eliminate invariant expressions.

• Make use of the TEMPORARY function.

• Utilize the IDL Code Profiler.

Attention also must be given to algorithm complexity and efficiency, as this is usually

the greatest determinant of resources used. For a more detailed discussion on the

subject of writing efficient IDL programs (along with some code examples), please

consult the Building IDL Applications documentation manual included with the IDL

online help system [Fig. A-1].

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 31 of 31

Figure A-1: The discussion on Writing Efficient IDL Programs

© 2008 ITT Visual Information Solutions
All Rights Reserved

IDL® is a registered trademark of ITT Visual Information Solutions for the computer software described
herein and its associated documentation. All other product names and/or logos are trademarks of their
respective owners.

The information contained in this document pertains to software products and services that are subject to
the controls of the Export Administration Regulations (EAR). All products and generic services described
have been classified as EAR99 under U.S. Export Control laws and regulations, and may be re-transferred
to any destination other than those expressly prohibited by U.S. laws and regulations. The recipient is
responsible for ensuring compliance to all applicable U.S. Export Control laws and regulations.

