

IDL Tutorial

Advanced Image Processing

Copyright © 2008 ITT Visual Information Solutions

All Rights Reserved
http://www.ittvis.com/

IDL® is a registered trademark of ITT Visual Information Solutions for the computer

software described herein and its associated documentation. All other product names

and/or logos are trademarks of their respective owners.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 2 of 34

The IDL Intelligent Tools (iTools)

The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data

analysis and visualization with the ability to produce presentation quality graphics.

The iTools allow users to continue to benefit from the control of a programming

language, while enjoying the convenience of a point-and-click environment. There

are 7 primary iTool utilities built into the IDL software package. Each of these seven

tools is designed around a specific data or visualization type :

• Two and three dimensional plots (line, scatter, polar, and histogram style)

• Surface representations

• Contours

• Image displays

• Mapping

• Two dimensional vector flow fields

• Volume visualizations

The iTools system is built upon an object-oriented component framework

architecture that is actually comprised of only a single tool, which adapts to handle

the data that the user passes to it. The pre-built iPlot, iSurface, iContour, iMap,

iImage, iVector and iVolume procedures are simply shortcut configurations that

facilitate ad hoc data analysis and visualization. Each pre-built tool encapsulates the

functionality (data operations, display manipulations, visualization types, etc.)

required to handle its specific data type. However, users are not constrained to work

with a single data or visualization type within any given tool. Instead, using the

iTools system a user can combine multiple dataset visualization types into a single

tool creating a hybrid that can provide complex, composite visualizations.

Digital Images and Advanced iImage Operations

IDL provides a powerful environment for image processing and display. Digital

images are easily represented as two-dimensional arrays in IDL and can be

processed just like any other array. Within an image array the value of each pixel

represents the intensity and/or color of that position in the scene. Images of this

form are known as sampled or raster images, because they consist of a discrete grid

of samples. IDL contains many procedures and functions specifically designed for

image display and processing. In addition, the iImage tool allows the user great

flexibility in manipulating and visualizing image data.

In the following exercise, the image from the example data file “meteorite.bmp” will

be input into IDL. This example data file is located in the “data” subfolder.

The file is in Windows bitmap format and contains an image of a thin section taken

through the Shergotty meteorite that is believed to represent a sample of the surface

of Mars. Input the image data into the current IDL session by utilizing the Import

Image macro built into the IDL Development Environment :

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 3 of 34

1. IDL> import_image

2. Navigate to the “data” subfolder and select the “meteorite.bmp” file.

Information on the image and a small preview will be displayed in the bottom

of the Select Image File dialog [Fig. 1].

3. Press the “Open” button to read the image data into IDL and dismiss the

Import Image wizard.

Once the Import Image macro is finished running the user will be returned to the

main IDLDE window where a new variable named “meteorite_image” is now present

within the current IDL session. The HELP procedure can be used to obtain

information on this variable :

4. IDL> HELP, meteorite_image
 METEORITE_IMAGE STRUCT = -> <Anonymous> Array[1]

Figure 1: The Import Image macro dialog

The output from the HELP procedure shows that the “meteorite_image” variable is

actually a structure containing multiple pieces of data and information read in from

the BMP image file. To obtain information on the contents of this structure variable

the HELP procedure must be executed with the STRUCTURE keyword set :

5. IDL> HELP, meteorite_image, /STRUCTURE
 ** Structure <14ca450>, 5 tags, length=177112, data
 length=177106, refs=1:

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 4 of 34

 IMAGE BYTE Array[514, 343]
 R BYTE Array[256]
 G BYTE Array[256]
 B BYTE Array[256]
 QUERY STRUCT -> <Anonymous> Array[1]

The actual image data from the BMP file is stored in the IMAGE tag of the structure

variable, which contains a 2-dimensional array that has 514 columns and 343 rows

with an 8-bit (BYTE) data type. The R, G, and B tags within the structure variable

are provided to store the color table vectors that can be stored within 8-bit BMP files,

which in this case are not necessary since the image is in simple grayscale mode.

Furthermore, the QUERY tag stores yet another sub-structure that contains other

useful information on the BMP image file.

In order to access the data that is stored within the fields of this “meteorite_image”

structure, the period “.” character must be used to reference the tags. For example,

to view the information within the QUERY sub-structure field the following syntax

must be utilized :

6. IDL> HELP, meteorite_image.query, /STRUCTURE
 ** Structure <14ca298>, 7 tags, length=40, data length=36,
 refs=3:
 CHANNELS LONG 1
 DIMENSIONS LONG Array[2]
 HAS_PALETTE INT 1
 NUM_IMAGES LONG 1
 IMAGE_INDEX LONG 0
 PIXEL_TYPE INT 1
 TYPE STRING 'BMP'

The QUERY field contains some useful information on the BMP image file. In order to

access the actual image data stored within the “meteorite_image” structure in a

manner that does not require a lot of typing, extract the IMAGE field of the structure

and assign it to a new variable named “image” :

7. IDL> image = meteorite_image.image

Once this is accomplished a new variable is created at the main IDL level that is

simply called “image” :

8. IDL> HELP, image
 IMAGE BYTE = Array[514, 343]

Now that the image data has been extracted into a simple variable it can be easily

visualized by loading it into the iImage utility :

9. IDL> iImage, image

The resulting IDL iImage visualization window should look similar to Fig. 2.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 5 of 34

Figure 2: Display of the Shergotty meteorite image within the iImage utility

On the right-hand side of the IDL iImage window the “Min:” and “Max:” boxes show
that the pixels in the image range throughout the full 8-bit range (0 � 255).

However, the histogram plot window illustrates that most of the pixels within the

image have brightness values in the lower half of the data range. The histogram plot

is essentially portraying the overall dark gray to black appearance of the image.

A simple form of image enhancement can be obtained by moving the histogram

threshold bars within the iImage utility. This will adjust the range of pixel data

values that are mapped to the 256 levels of gray displayed on the screen. The

stretching of the image in the defined range is performed in a linear fashion and

this provides a form of contrast enhancement.

10. Within the “Max:” field box, type a pixel data value of 110 and press the Enter

key on the keyboard. This will saturate all pixels in the image with a value of
110 or higher to white, while stretching the pixels with values 0 � 109

throughout the full range of the grayscale display.

The resulting IDL iImage visualization window should look similar to Fig. 3.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 6 of 34

Figure 3: Contrast enhancement of the image via a linear stretch

This manipulation of the histogram stretch bars only affects the display of the image

and does not change the actual pixel values for the image dataset. Notice that the

“Pixel Value:” field within the Image panel now displays a number in parentheses

next to the actual pixel data value. This number in parentheses is the output

grayscale intensity for the current pixel according to the stretch that is being applied.

11. Change the “Max:” field back to “255” by either typing in the text box or

clicking on the green stretch bar and dragging it back up to the top of the

histogram display window.

There are a number of analysis tools found within the Operations menu of the iImage

utility. The operations that are built into the iTools system represent some of the

most common image processing tasks.

12. While the image object is selected within the IDL iImage window, select

“Operations > Statistics…” from the menu system.

A separate dialog will appear that displays some statistical information on the current

image dataset [Fig. 4]. Notice that the average (mean) pixel value for this image is

47.7387, which explains the relatively dark appearance of the original image.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 7 of 34

13. Once finished viewing the image statistics, close the Display statistics for the

selected item dialog.

Figure 4: Statistics for the meteorite thin section image

One of the operations built into the iImage utility is the Unsharp Masking

technique, which applies a sharpening filter to the image. Digital Unsharp Masking

is a digital image processing technique that increases the contrast where subtle

details are set against a diffuse background. This operation suppresses features

which are smooth (those with structures on large scales) in favor of sharp features

(those with structure on small scale), resulting in a net enhancement of the contrast

of fine structure in the image.

14. From the IDL iImage window menu system select “Operations > Filter >

Unsharp Mask”.

15. Within the Unsharp Mask dialog that pops up, leave all parameters set to their

default values and simply press “OK”.

Notice that the fine detail within the image is enhanced by applying the Unsharp

Mask operation.

The iImage utility also has a built-in tool for convolving an image array with a kernel.

Convolution is a simple matrix algebra operation that can be used for various types

of smoothing, shifting, differentiation, edge detection, etc..

16. Select “Operations > Filter > Convolution” from the iImage menu system. A

separate dialog entitled Convolution Kernel Editor will appear [Fig. 5].

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 8 of 34

Figure 5: The iTools Convolution Kernel Editor dialog

The Convolution Kernel Editor window allows the user to select from a list of pre-

defined kernels, or define their own user-defined kernel. The convolution of these

different kernels will have a wide variety of effects on the resulting image display.

The Laplacian filter can be applied by convolving a Laplacian kernel with the image.

A Laplacian filter is an edge enhancement filter that operates without regard to edge

direction. Laplacian filtering emphasizes maximum values within the image by using

a kernel with a high central value typically surrounded by negative weights in the up

down and left-right directions and zero values at the kernel corners. The Laplacian

kernel convolution is a form of high pass filter, which removes the low frequency

components of an image while retaining the high frequency (local variations). It can

be used to enhance edges between different regions as well as to sharpen an

image.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 9 of 34

17. Using the droplist next to the “Filter” parameter in the upper left hand corner

of the Convolution Kernel Editor dialog, select the “Laplacian” kernel.

18. Notice that a surface representation of the current kernel is displayed within

this dialog. The user can click on this surface and rotate it in order to

visualize the structure of the kernel.

19. Once the “Laplacian” kernel has been selected press “OK” to apply the

convolution operation and dismiss the Convolution Kernel Editor dialog.

20. At this point, it is beneficial to change the range for the current stretch to the

following values :

• Max: 140

• Min: 115

The application of the Laplacian filter will enhance the edges between different

regions (in this case mineral grains) within the image. The resulting IDL iImage

visualization window should look similar to Fig. 6.

Figure 6: Application of a Laplacian filter convolution

IDL also has a number of morphological image operators built into its library of

routines. Mathematical morphology is a method of processing digital images on the

basis of shape. Some of these morphological algorithms have been added to the

operations within the iTools system. For example, the dilate operator, which is

commonly known as the "fill", "expand", or "grow” operator, can be used to further

enhance the boundaries between mineral grains in the current image.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 10 of 34

21. Select “Operations > Morph > Dilate” from the iImage menu system. A

separate dialog entitled Dilate will appear [Fig. 7]. The parameters

associated with the dilate operation are displayed in this dialog along with a

preview of the operation.

22. Click on the box to the right of the “Structure shape” field and change the

setting to “Circle” [Fig. 7].

23. Press the “OK” button to apply the dilate operation and dismiss the Dilate

dialog.

Figure 7: The iTools Dilate operation dialog

The resulting IDL iImage visualization window should look similar to Fig. 8.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 11 of 34

Figure 8: Application of the Dilate morphological operation

24. Once finished viewing the processed image, close the IDL iImage window.

In addition to sharpening, high pass filtering, and edge enhancement techniques, IDL

also offers operations to perform image smoothing, low pass filtering, and noise

removal. Re-launch the iImage utility with the original image so these techniques

can be investigated :

25. IDL> iImage, image

The median operation replaces each pixel with the median of the two-dimensional

neighborhood of the specified width. In an ordered set of values, the median is a

value with an equal number of values above and below it. Median filtering is

effective in removing salt and pepper noise (isolated high or low values). The

resulting image will have a less grainy appearance than the original.

26. From the iImage menu system, select “Operations > Filter > Median”.

27. Within the Median dialog window, leave all of the default settings and press

“OK”.

The smooth operation will compute the boxcar average of a specified width for the

image. Smoothing is similar to the median filter except the pixels are replaced with

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 12 of 34

the average (mean) value across the neighborhood. This tends to have the effect of

blurring the edges within the image and making them more diffuse.

28. From the iImage menu system, select “Operations > Filter > Smooth”.

29. Press the “OK” button to apply the smoothing operation and dismiss the

Smooth dialog window.

Finally, the Convolution tool can be used once again to apply a low pass filter to the

image. The Gaussian kernel provides a form of low pass filtering that preserves the

low frequency components of an image.

30. Select “Operations > Filter > Convolution” from the iImage menu system.

31. Within the Convolution Kernel Editor dialog, change the “Filter” selection

droplist to “Gaussian” [Fig. 9].

32. Edit the number of columns and rows fields so the kernel has a size of 5 x 5

[Fig. 9].

33. Press the “OK” button to apply the Gaussian filter and dismiss the dialog.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 13 of 34

Figure 9: Application of the Gaussian filter convolution

The resulting IDL iImage visualization window should look similar to Fig. 10.

Figure 10: Image display after noise removal, smoothing, and low pass

filtering

34. Once finished viewing the processed image, close the IDL iImage window.

Thresholding, Clipping, and Histogram Equalization

Although the iImage utility has a lot of built-in analytical techniques, the bulk of

IDL’s image processing capabilities must be accessed using routines within the IDL

language. IDL’s image processing library contains a number of routines for contrast

enhancement, filtering, feature extraction, image segmentation, geometry

transformations, and regions of interest analysis. In addition, the IDL language has

built-in operators that can be utilized to perform simple image processing techniques

such as masking and stretching.

Thresholding (also known as masking) is used to isolate features within an image

above, below, or equal to a specified pixel value. The value (known as the threshold

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 14 of 34

level) determines how the masking occurs. In IDL, thresholding is performed using

the relational operators. IDL’s relational operators are illustrated in Table 7-1 :

OPERATOR DESCRIPTION

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

Table 7-1 : IDL’s Relational Operators

For example, in order to threshold the Shergotty meteorite image and identify the

pixels that have a value greater than 70 (byte) simply execute the following

statement :

1. IDL> mask = image GT 70B

This expression creates a new variable named “mask” that is a 2-dimensional array

of the same size as the original image. This new “mask” variable contains a binary

image where each pixel has a value of either one (original image pixel value was

greater than 70) or zero (original image pixel value was equal to or less than 70). At

this point, the user may wish to view this binary threshold image by loading it into

the iImage utility :

2. IDL> iImage, mask

The resulting image display within the IDL iImage window should appear completely

black. This is due to the fact that all of the pixels within the “mask” binary image

have a value of 0 or 1, which are very difficult to discern (and very dark) within a 0
� 255 grayscale display. Consequently, the BYTSCL function should be utilized

when displaying binary images so the pixels with a value of 1 are actually mapped to

255 (white). The BYTSCL function scales all values of an array into a specified range
(0 � 255 by default) :

3. Close the existing IDL iImage window.

4. Re-issue the iImage statement, but this time wrap the mask image variable

with a dynamic call to the BYTSCL function :

IDL> iImage, BYTSCL (mask)

The resulting IDL iImage visualization window should look similar to Fig. 11.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 15 of 34

Figure 11: Threshold image showing pixels with values greater than 70

(white) and less than or equal to 70 (black)

5. Once finished viewing the binary threshold image, close the IDL iImage

window.

Binary threshold images can also be used to mask-out the pixels in an image that

do not qualify based on the given expression. For example, in order to display only

those pixels from the original image that have a value greater than 70 simply

execute the following statements :

6. IDL> masked = image * mask

7. IDL> iImage, masked

The resulting IDL iImage visualization window should look similar to Fig. 12.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 16 of 34

Figure 12: Display of the original image with all pixels that have a value of

70 or less masked-out (i.e. displayed as black)

8. Once finished viewing the masked image, close the IDL iImage window.

The user can also provide both upper and lower bounds when creating threshold

images by using the Boolean operators built into IDL (AND, NOT, OR, and XOR). For

example, create a threshold image that identifies those pixels which have a data

value between 50 and 70 :

9. IDL> mask = (image GE 50B) AND (image LE 70B)

10. IDL> iImage, BYTSCL (mask)

The resulting IDL iImage visualization window should look similar to Fig. 13.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 17 of 34

Figure 13: Threshold image showing all pixels with data values between 50

and 70

11. Once finished viewing the threshold image, close the IDL iImage window.

Clipping is similar to thresholding because pixels with data values above or below a

specified level are all set to the same value. However, when clipping an image the

pixels that do not satisfy the expression are set to the selected level and the

resulting image is not binary in nature. Clipping can be used to enhance features

within an image.

In IDL, clipping is performed with the minimum (<) and maximum (>) operators. In

order to clip an image the user must design an expression that contains an image

array, the appropriate operator, and the clipping level. For example, to clip the

meteorite thin section image so that all pixels with a value greater than or equal to

50 are set to a value of 50 simply execute the following statements :

12. IDL> clipped = image < 50B

13. IDL> iImage, clipped

The resulting IDL iImage visualization window should look similar to Fig. 14.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 18 of 34

Figure 14: Clipped image showing all pixels with data values 50 or higher

set to a brightness level of 50

14. Once finished viewing the clipped image, close the IDL iImage window.

When clipping is used in conjunction with byte-scaling it is equivalent to performing a

stretch on an image. For example, in order to stretch the image between the range
of 25 � 100 simply execute the following statements :

15. IDL> stretched = BYTSCL (image > 25B < 100B)

16. IDL> iImage, stretched

It is worth mentioning that the same stretching technique can be obtained by

utilizing the MIN and MAX keywords to the BYTSCL function :

17. IDL> stretched = BYTSCL (image, MIN=25, MAX=100)

18. IDL> iImage, stretched

The resulting IDL iImage visualization window(s) should look similar to Fig. 15.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 19 of 34

Figure 15: Stretched image that highlights all pixels with data values

between 25 and 100

19. Once finished viewing the stretched image, close the IDL iImage window(s).

In addition to simple linear stretching techniques, IDL also has routines that allow

the user to stretch the image using other histogram manipulations. For example, the

HIST_EQUAL function can be used to apply a histogram equalization stretch to the

image data. Histogram equalization employs a monotonic, non-linear mapping which

re-assigns the intensity values of pixels in the input image such that the output

image contains a uniform distribution of intensities (i.e. a flat histogram). Execute

the following statements in order to derive and display the histogram-equalized

version of the meteorite thin section image :

20. IDL> equalized = HIST_EQUAL (image)

21. IDL> iImage, equalized

Notice that the resulting image has improved contrast and the histogram has a very

even distribution throughout the 0 � 255 range. The resulting IDL iImage

visualization window should look similar to Fig. 16.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 20 of 34

Figure 16: Image display with a histogram equalization stretch

22. Once finished viewing the histogram-equalized image, close the IDL iImage

window.

In addition to the standard histogram equalization provided by the HIST_EQUAL

function, IDL also provides the ADAPT_HIST_EQUAL function which performs

adaptive histogram equalization (a form of automatic image contrast enhancement).

Adaptive histogram equalization involves applying contrast enhancement based on

the local region surrounding each pixel. Each pixel is mapped to an intensity

proportional to its rank within the surrounding neighborhood. This method of

automatic contrast enhancement has proven to be broadly applicable to a wide range

of images and to have demonstrated effectiveness. Execute the following

statements in order to apply the adaptive histogram equalization and display the

resulting image :

23. IDL> adaptive = ADAPT_HIST_EQUAL (image)

24. IDL> iImage, adaptive

The resulting IDL iImage visualization window should look similar to Fig. 17.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 21 of 34

Figure 17: Image display with an adaptive histogram equalization stretch

25. Once finished viewing the adaptive histogram-equalized image, close the IDL

iImage window.

Morphological Operations and Image Segmentation

Morphological image processing operations reveal the underlying structures and

shapes within binary and grayscale images. While individual morphological

operations perform simple functions, they can be combined to extract specific

information from an image. Morphological operations often precede more advanced

pattern recognition and image analysis operations such as segmentation. Shape

recognition routines commonly include image thresholding or stretching to separate

foreground and background image features.

Morphological operations apply a structuring element or morphological mask to an

image. A structuring element that is applied to an image must be 2 dimensional,

having the same number of dimensions as the array to which it is applied. A

morphological operation passes the structuring element, of an empirically

determined size and shape, over an image. The operation compares the structuring

element to the underlying image and generates an output pixel based upon the

function of the morphological operation. The size and shape of the structuring

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 22 of 34

element determines what is extracted or deleted from an image. In general, smaller

structuring elements preserve finer details within an image than larger elements.

Start by thresholding the Shergotty meteorite image in order to identify the dark

mineral grains with a pixel value less than or equal to 20 :

1. IDL> minerals = image LE 20B

Next, create a structuring element array with a square shape that will help extract

objects with sharp rectangular edges :

2. IDL> structElem = BYTARR (3,3) + 1B

3. IDL> PRINT, structElem
 1 1 1
 1 1 1
 1 1 1

The MORPH_CLOSE function can be used with this structuring element to apply the

closing operator to the binary threshold image. The closing operator has the effect

of clumping the threshold image, thereby filling in holes within and connecting gaps

between neighboring regions. In addition, the MORPH_OPEN function can be

subsequently used to apply the opening operator, which will have a sieving effect on

the image that helps to remove small isolated regions. Apply these morphological

operations and visualize the results in comparison to the original image :

4. IDL> clumped = MORPH_CLOSE (minerals, structElem)

5. IDL> sieved = MORPH_OPEN (minerals, structElem)

6. IDL> iImage, image, VIEW_GR=[2,2]

7. IDL> iImage, BYTSCL (minerals), /VIEW_NE

8. IDL> iImage, BYTSCL (clumped), /VIEW_NE

9. IDL> iImage, BYTSCL (sieved), /VIEW_NE

10. Click on each individual window pane and change the canvas zoom droplist to

“50%”.

The resulting IDL iImage visualization window should look similar to Fig. 18.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 23 of 34

Figure 18: Display of original image (upper left), binary threshold image of

dark mineral grains (upper right), application of a clumping operation

(lower left), followed by a sieving operation (lower right)

Finally, the LABEL_REGION function can be used to perform image segmentation,

which will consecutively label all of the regions, or blobs, of the clumped and sieved

binary image with a unique region index. The resulting segmentation image can be

displayed with a color table in order to visualize the separate distinct mineral grains

within the meteorite image :

11. IDL> segmented = LABEL_REGION (sieved)

12. IDL> iImage, segmented

13. Within the Image panel on the right hand side of the IDL iImage window,

press the “Edit Palette…” button.

14. Within the Palette Editor dialog, click on the “Load Predefined…” droplist and

select “Rainbow18” from the dropdown menu.

15. Press the “OK” button to dismiss the Palette Editor dialog.

The resulting IDL iImage visualization window should look similar to Fig. 19.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 24 of 34

Figure 19: Image segmentation of the separate dark mineral grains

26. Once finished viewing the segmentation image, close the IDL iImage window.

Processing Images in Alternate Domains

So far all of the processing and visualization of image data has been performed in

the spatial domain. This means that the digital image is represented by pixel

values that have a particular spatial location (i.e. column and row). However, a

pixel’s value and location can also be represented in other domains. Transforming

an image into an alternate domain can provide a basis for performing image filters,

noise removal, sharpening, or feature extraction. In addition, domain

transformations also provide additional information about an image and can enable

robust image compression techniques.

In the frequency or Fourier domain, the value and location are represented by

sinusoidal relationships that depend upon the frequency of a pixel occurring within

an image. In this domain, pixel location is represented by its X and Y frequencies

and its value is represented by an amplitude. Images can be transformed into the

frequency domain to determine which pixels contain the most important information

and whether repeating patterns occur.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 25 of 34

In addition to the Fourier domain, IDL also has the ability to transform images into

the wavelet (time-frequency), Hough, and Radon domains. In the wavelet domain

the value and location of pixels are represented by sinusoidal relationships that only

partially transform the image into the frequency domain. The wavelet

transformation process is the basis for many image compression algorithms. The

image information within the Hough domain shows the pixels of the original

(spatial) image as sinusoidal curves. If the points of the original image form a

straight line, their related sinusoidal curves in the Hough domain will intersect.

Masks can be easily applied to the image within the Hough domain to determine if

and where straight lines occur. The image information within the Radon domain

shows a line through the original image as a point. Specific features and geometries

within the original image will produce peaks within the Radon domain and can be

easily identified.

In IDL, the FFT routine can be utilized to perform a Fast Fourier Transformation

and convert an image from the spatial domain into the frequency domain. In the

following exercise, the image data from the example data file “hamburg.jp2” will be

input into the iImage utility and subsequently transformed into the Fourier domain.

This example data file is located in the “data” subfolder.

The file “hamburg.jp2” is in JPEG2000 format and contains a satellite image of the

loading docks at the port in Hamburg, Germany. Start by loading this image into a

new iImage utility :

1. IDL> iImage

2. From the iImage menu system select “File > Open…”.

3. Select the “hamburg.jp2” file and hit “Open”.

The resulting image display should look similar to Fig. 20. Notice the linear and

rectangular patterns that are prevalent in this image in both diagonal directions.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 26 of 34

Figure 20: Image of the port in Hamburg, Germany

Once the image has been loaded into the iImage utility, it can be exported to an IDL

variable for processing at the IDL> command prompt. Use the following steps to

create a variable for this image at the main IDL level :

4. Select “File > Export…” from the iImage menu.

5. In Step 1 of 3 of the IDL Data Export Wizard select “To an IDL Variable” and

press the “Next >>” button.

6. In Step 2 of 3 of the IDL Data Export Wizard select the “Image Planes”

parameter and press the “Next >>” button [Fig. 21].

7. In Step 3 of 3 of the IDL Data Export Wizard change the “IDL Variable Name:”

field to “hamburg” and press the “Finish” button.

8. Once this is accomplished, close the IDL iImage window and return to the

main IDL Development Environment.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 27 of 34

Figure 21: Step 2 of 3 of the IDL Data Export Wizard

A new variable named “hamburg” now exists at the main IDL level :

9. IDL> HELP, hamburg
 HAMBURG BYTE = Array[3, 500, 500]

In order to work with this image in the frequency domain it is beneficial to extract

the individual color channel images. This can be accomplished using IDL’s standard

array subscripting syntax in conjunction with the REFORM function, which is used to

remove the first dimension (that has a size of one) and return a simple two-

dimensional array :

10. IDL> r = REFORM (hamburg[0,*,*])

11. IDL> g = REFORM (hamburg[1,*,*])

12. IDL> b = REFORM (hamburg[2,*,*])

13. IDL> HELP, r, g, b
 R BYTE = Array[500, 500]
 G BYTE = Array[500, 500]
 B BYTE = Array[500, 500]

Note: Remember that the up-arrow and down-arrow keys on the keyboard can be used to perform
command recall within IDL, which may be beneficial during these exercises.

Once this is accomplished, the FFT routine can be used to transform the image

planes into the frequency domain :

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 28 of 34

14. IDL> rFFT = FFT (r)

15. IDL> gFFT = FFT (g)

16. IDL> bFFT = FFT (b)

The Fast Fourier Transform decomposes an image into sines and cosines of varying

amplitudes and phases. The values of the resulting transform represent the

amplitudes of particular horizontal and vertical frequencies. The data type of the

array returned by the FFT function is complex, which contains real and imaginary

parts :

17. IDL> HELP, gFFT
 GFFT COMPLEX = Array[500, 500]

The amplitude is the absolute value of the FFT, while the phase is the angle of the

complex number, computed using the arctangent. In most cases, the imaginary part

will look the same as the real part.

The image information in the frequency domain shows how often patterns are

repeated within an image. Within the Fourier domain, low frequencies represent

gradual variations in an image, while high frequencies correspond to abrupt

variations in the image. The lowest frequencies usually contain most of the

information, which is shown by the large peak in the center of the result. If the

image does not contain any background noise, the rest of the data frequencies are

very close to zero.

The results of the FFT function are often shifted to move the origin of the X and Y

frequencies to the center of the display. Furthermore, the range of values from the

peak to the high frequency noise is usually extreme. Consequently, a logarithmic

scale is often utilized in order to visualize the image in the frequency domain. Since

the logarithmic scale only applies to positive values, the power spectrum should be

computed since it is the absolute value squared of the Fourier transform.

Visualize the power spectrum of the Fourier domain image for the green channel by

executing the following statements :

18. IDL> center = 500 / 2 + 1

19. IDL> gShift = SHIFT (gFFT, center, center)

20. IDL> gPowSpec = ABS (gShift) ^ 2

21. IDL> gScaled = ALOG10 (gPowSpec)

22. IDL> iImage, gScaled, TITLE='Log-Scaled FFT Power Spectrum (G)'

The resulting IDL iImage visualization window should look similar to Fig. 22.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 29 of 34

Figure 22: Power spectrum for the green channel image in the frequency

domain

Notice the orientation of spatial patterns within the power spectrum image in both of

the diagonal directions (just like the original image).

23. Once finished viewing the power spectrum image, close the IDL iImage

window.

It may also be beneficial to visualize the power spectrum as a surface. Use the

REBIN function to sub-sample the power spectrum in order to suppress some of the

noise and set the shading for the surface to Gouraud :

24. IDL> iSurface, REBIN (gScaled, 100, 100), SHADING=1

The resulting IDL iSurface visualization window should look similar to Fig. 23.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 30 of 34

Figure 23: Power spectrum displayed as a surface

25. Once finished viewing the power spectrum surface, close the IDL iSurface

window.

Low frequencies within the image tend to contain the most information because they

determine the overall shape or patter in the image. High frequencies provide detail

in the image, but they are often contaminated by the spurious effects of noise.

Consequently, masks can be easily applied to an image within the frequency domain

in order to remove noise.

Create a mask for the low spatial frequency components based on the highest values

within the power spectrum for the green channel image :

26. IDL> lsfMask = REAL_PART (gScaled) GT -2.5

Note: The threshold value of –2.5 was arbitrarily selected based on the surface visualization above.

Visualize this mask by loading it into the iImage utility :

27. IDL> iImage, BYTSCL (lsfMask)

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 31 of 34

The resulting IDL iImage visualization window should look similar to Fig. 24.

Figure 24: Mask of the low spatial frequency components (white) within the

power spectrum for the green color channel

Notice that the low frequency components are found predominantly in the center of

the power spectrum.

28. Once finished viewing the mask image, close the IDL iImage window.

In order to remove the high spatial frequency noise from the image, this mask must

be applied to the Fourier transform data and then the inverse FFT must be

computed. Applying the low spatial frequency mask allows these components to be

converted back to the spatial domain during the inverse transform, while the high

spatial frequency components are masked out.

First, the mask image must be shifted back to the original location of the Fourier

transform :

29. IDL> lsfMask = SHIFT (lsfMask, -center, -center)

Once this is accomplished, the mask can be applied to the FFT results for the 3 color

channels :

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 32 of 34

30. IDL> rMasked = rFFT * lsfMask

31. IDL> gMasked = gFFT * lsfMask

32. IDL> bMasked = bFFT * lsfMask

The inverse FFT can be used in conjunction with the REAL_PART function in order to

convert the images back into the spatial domain :

33. IDL> rInvert = REAL_PART (FFT (rMasked, /INVERSE))

34. IDL> gInvert = REAL_PART (FFT (gMasked, /INVERSE))

35. IDL> bInvert = REAL_PART (FFT (bMasked, /INVERSE))

The result can be visualized by loading the individual color channel images into the

iImage utility [Fig. 25] :

36. IDL> iImage, RED=rInvert, GREEN=gInvert, BLUE=bInvert

Figure 25: Result of the inverse FFT after the high spatial frequency

components have been masked out (low pass filter)

37. Once finished viewing the inverse FFT image, close the IDL iImage window.

The high spatial frequency components of an image can also be enhanced using

masking techniques in the frequency domain. A circular-cut (high pass) filter can

be created by utilizing the DIST function in IDL and the appropriate threshold value :

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 33 of 34

38. IDL> hsfMask = DIST (500) GE 50

Visualize this mask by shifting it into the appropriate location and loading the result

into the iImage utility [Fig. 26] :

39. IDL> iImage, BYTSCL (SHIFT (hsfMask, center, center)), $
 BACKGROUND=[80,80,80]

Figure 26: Circular-Cut filter for the high spatial frequency components

(white) within the image

Notice that the high frequency components are found around the outer edges of the

transform.

40. Once finished viewing the mask image, close the IDL iImage window.

Use the same methodology as before to apply the high pass filter, compute the

inverse FFT, and display the result :

41. IDL> rMasked = rFFT * hsfMask

42. IDL> gMasked = gFFT * hsfMask

43. IDL> bMasked = bFFT * hsfMask

44. IDL> rInvert = REAL_PART (FFT (rMasked, /INVERSE))

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 34 of 34

45. IDL> gInvert = REAL_PART (FFT (gMasked, /INVERSE))

46. IDL> bInvert = REAL_PART (FFT (bMasked, /INVERSE))

47. IDL> iImage, RED=rInvert, GREEN=gInvert, BLUE=bInvert

The resulting IDL iImage visualization window should look similar to Fig. 27.

Figure 27: Result of the inverse FFT after the low spatial frequency

components have been masked out (high pass filter)

48. Once finished viewing the inverse FFT image, close the IDL iImage window.

© 2008 ITT Visual Information Solutions
All Rights Reserved

IDL® is a registered trademark of ITT Visual Information Solutions for the computer software described
herein and its associated documentation. All other product names and/or logos are trademarks of their
respective owners.

The information contained in this document pertains to software products and services that are subject to
the controls of the Export Administration Regulations (EAR). All products and generic services described
have been classified as EAR99 under U.S. Export Control laws and regulations, and may be re-transferred
to any destination other than those expressly prohibited by U.S. laws and regulations. The recipient is
responsible for ensuring compliance to all applicable U.S. Export Control laws and regulations.

